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ABSTRACT The detection of Alzheimer’s Disease in its early stages is crucial for patient care and drugs
development. Motivated by this fact, the neuroimaging community has extensively applied machine learning
techniques to the early diagnosis problem with promising results. The organization of challenges has helped
the community to address different raised problems and to standardize the approaches to the problem.
In this work we use the data from international challenge for automated prediction of MCI from MRI
data to address the multiclass classification problem. We propose a novel multiclass classification approach
that addresses the outlier detection problem, uses pairwise t-test feature selection, project the selected
features onto a Partial-Least-Squares multiclass subspace, and applies one-versus-one error correction output
codes classification. The proposed method yields to an accuracy of 67% in the multiclass classification,
outperforming all the proposals of the competition.

INDEX TERMS Alzheimer’s disease, CAD, error correcting output codes, mild cognitive impairment,
multiclass classification, one versus one, partial least squares, random forests, support vector machines.

I. INTRODUCTION
Assistance in diagnosis of Alzheimer’s Disease (AD) in
it’s early stages has received a constant interest from the
medical imaging community in the past decades due to its
medical importance and societal implications [8]. Distin-
guishing between AD and its related neurological disorders,
including its prodromal stage Mild Cognitive Impairment
(MCI), is very challenging from the clinical evaluation point
of view, predominantly in the early stages of the disease.
Medical imaging techniques, such as Magnetic Resonance
Imaging (MRI) or Positron Emission Tomography (PET),
have provided new tools to assess the subject conditions in
a non-invasive way. However, both the subtle changes pro-
duced in the brain and the lack of a complete understanding
of the disease development still pose challenges to the
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diagnosis assistance through brain images [45], [47]. Con-
cretely, the discrimination between MCI and AD has been
shown to be a difficult task [24], [26], [30], [41], [42].
Machine learning applications in neuroimaging have become
an indispensable tool for brain image analysis and computer
aided diagnosis (CAD) systems, producing a prolific area of
research [8]. However, the lack of standardized datasets hin-
ders direct comparisons of approaches, and the identification
of their virtues.

The open data policy and the creation of big databases have
facilitated the organization of competitions for improving
the CAD systems for AD diagnosis, such as CADDemen-
tia [3] and TADPOLE (https://tadpole.grand-challenge.org/),
among others. The availability of the data for posterior anal-
ysis allows for retrospective analysis of the competitions and
new submission proposals. It also facilitates the reproducibil-
ity of results, a problem that is becoming of central interest
in neuroimaging research [4].
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FIGURE 1. Flowchart of the proposed method.

This work makes use of the International challenge for
automated prediction of MCI data. The objective of the com-
petition was the development of CAD systems for the multi-
class classification of 4 classes: Healthy Controls (HC), Mild
Cognitive Impaired (MCI) subjects, Mild cognitive impaired
subjects that converted into Alzheimer’s Disease during the
study (cMCI), and Alzheimer’s Disease (AD) patients. The
challenge provided with preprocessed MRI data of the dif-
ferent classes to allow participant proposals of optimized
CAD systems, based on the finding that combining multiple
anatomical measures improves classification of early diagno-
sis of AD [44]. The results of the challenge were published in
the special issue [38] on the Journal of Neuroscience Meth-
ods. The winner proposal used a random forest ensemble with
feature extraction methods [10], yielding to a 61 % accuracy
in the multiclass classification problem.

Ensemble methods have been successfully applied to neu-
roimaging problem [7], [20], [32], [33]. It has also been
proven that multiclass approaches using binary classifiers
can be a competitive solution to the problem, such as those
based on one-versus-one approaches, one-versus-rest in the
context of Error Output Correcting codes (ECOC) [6], [9],
[13], [46]. This study uses and compares ensemble methods
and aggregation methods by binary classifiers, as those of
highest rated approaches in the challenge [5].

To optimize the multiclass classification through combi-
nation of anatomical features, not only classifier aggrega-
tions are necessary, but also feature extraction techniques
[36]. Different approaches to feature selection and extraction
reported high relevance in the literature, with high accu-
racy and also a correspondence between automatic cortical
and subcortical region selection and clinical findings [7].
Concretely, brain atrophy has been found to be relevant for
AD diagnosis in white matter cortical and subcortical regions,
as well as hippocampal volume, cortical thickness, and grey
matter density, thus making feature extraction a reasonable
preprocessing step (see [44] and references therein). One of

such successful methods for feature selection and combina-
tion is Partial Least Squares, linearly transforming the data
into a space maximal separation between classes [25], [35],
[39], [40].

Through the extensive use of feature extraction and
ione-vs-one feature selection and classification, we propose
and study a CAD system for identification of early stages
of AD and MCI that optimizes the combination multiple
anatomical measures of atrophy in the brain to improve clas-
sification performance.

II. METHODS
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.Weiner,
MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of MCI and early AD. For up-to-date infor-
mation, see www.adni-info.org.

A. DATASETS
This section shows the datasets that were provided for the
International challenge for automated prediction of MCI
fromMRI data (https://inclass.kaggle.com/c/mci-prediction).
MRIs were selected from the ADNI and preprocessed by
Freesurfer (v5.3) [14], [15]. In total 429 demographical, clin-
ical as well as cortical and subcortical MRI features were
available for each subject. Fig. 2 shows the average values
for different regions across the brain for the four available
classes.

Two different datasets were provided for training and test-
ing the proposed methods for automated prediction of MCI
from MRI data. According to their diagnosis, patients were
grouped into four classes: healthy control (HC) subjects,
AD patients, MCI subjects whose diagnosis did not change
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FIGURE 2. Mean cortical thickness of the database for each class.

in the follow-up (MCI) and converter MCI (cMCI) subjects
that progressed from MCI to AD in the follow-up of the
disease. The training dataset consisted of 240 ADNI real sub-
jects (60 HC, 60 MCI, 60 cMCI and 60 AD). Demographic
information is shown in Tables 1 and 2. The testing dataset
consisted of 500 subjects. 160 out of them were real subjects,

TABLE 1. Training dataset (sociodemographic data and MMSE for each
group). X [Y ] denotes the mean X and standard deviation Y for each
group.

TABLE 2. Real data in testing dataset (sociodemographic data and MMSE
for each group). X [Y ] denotes the mean Xand standard deviation Y for
each group.

whereas the 340 remaining subjects were artificially gener-
ated from the real data. Table 2 shows demographic infor-
mation of only the 160 real patients excluding 340 dummy
subjects in the testing dataset. No information about the class
labels of the test set was available during the competition.
The test set was half split into public and private test sets and
only the accuracy score on the public dataset was available
for competitors until the challenge ended. Once the challenge
finished, class labels for the subjects on the test set were
provided to the competitors. The accuracy score on the real
subjects of the testing set was used as the figure of merit in
the competition.

B. WORKFLOW
The methodology followed in this work aims at optimizing
the binary classification of the different classes, HC, MCI,
cMCI and AD in the multiclass classification problem, so that
the overall classification performance is increased. To that
aim, the process is divided in four steps as depicted in Fig. 1.
A first preprocessing step is applied to discard outliers and
standardize the data. Secondly, based on the observation of
the existence of irrelevant or redundant data, a filter is applied
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FIGURE 3. Distribution of outliers per class above 8 standard deviations.

to eliminate unimportant features. Once a set of features is
selected, a combination of statistical tests and Partial Least
Squares (PLS) techniques are used to extract features at
binary level for each one vs. one classification (HC vs MCI,
HC vs. cMCI, etc..). Finally, binary classifiers are trained
on these data, and an aggregation method is proposed for
achieving a final multiclass decision.

1) PREPROCESSING
The presence of outliers is usually an undesirable source of
instabilities for machine learning applications. In neuroimag-
ing, outliers are specially challenging as they are frequently
found due to acquisition, scanner differences, preprocessing

artefacts or resulting from large intrinsic inter-subject vari-
ability, having a dramatic effect on the statistical based
analysis [17].

A carefully analysis of the data reveals a high abundance
of outliers on each of the 429 data features. In Fig. 3, the pres-
ence of outliers is depicted for selected features as measured
in standard deviations, with values exceeding 8 times the
standard deviation.

A common preprocessing step inmachine learning consists
of centering the data to zero mean and one standard devia-
tion values, usually known as z-score values [19]. However,
as Fig. 4a) shows, the z-score values of the data contain
high salt-and-pepper type noise. We attributed this effect
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FIGURE 4. Training data visualization using four features for corrected
and uncorrected values.

to a miss-transformation of the data format, coming from
freesurfer software, as described by the challenge organizers.
The outlier correction algorithm is described in box 1. The
algorithm results are shown in Fig. 4b). Correcting this format
defect reveals a different data structure, with high redun-
dancy, justifying posterior steps. Concretely, the features
sets 1-35, 45-73, 71-139, 140-277, 278-347, 348-413,
413-429, seem to contain very low inter-patient variability,
suggesting that the feature space dimension can be highly
reduced. In posterior sections, we show that feature space
dimension can be optimally reduced to a value below 20.

2) FEATURE SELECTION AND EXTRACTION
The preprocessing step is followed by the elimination of irrel-
evant features and the extraction of features for classification.
The former is a filter, in a one vs. one approach. The features
are sorted according to a specific criteria, thus eliminating
the features with the lowest relevance. The latter is achieved
under a multiclass PLS transformation of the selected fea-
tures, reducing the feature space dimension [21].

The sorting criteria is based on binary comparisons
between classes: HC vs.MCI, HC vs. cMCI, HC vs. AD,MCI
vs. cMCI, MCI vs. AD, and cMCI vs. AD. For each binary

Algorithm 1 Outlier Elimination Algorithm
Data: Raw data matrix D of r features and s subjects
Result: Clear outlier values
Compute median valuesM (s) of D for each feature ;
for i from 1 to r do

for j from 1 to s do
if D(i, j) > 50 ∗M (j) then

Replace outlier value by D(i, j)/1000;
else if D(i, j) < 50 ∗M (j) then

Replace outlier value by D(i, j) ∗ 1000;
end

end
end

comparison a t-test is performed for each feature, and the
features fi are sorted according to their value of the t statistic,
ti, i = 1, 2, . . . , 429. A 6 × 429 matrix S of sorted features
is generated in this process. From this matrix S, a submatrix
T is constructed by eliminating the n last columns, ordered
by decreasing value of the t statistic. The number of times m
a feature appeared in the matrix T was calculated for each
feature. The parameter m is a significance measure for each
feature and is constrained: 0 ≤ m ≤ 6. All the features
with a value of m under a fixed threshold R where filtered
out, resulting in a feature selected set S containing the most
relevant features for all the individual comparisons:

SR = {fi : fi ∈ T & mi > R} i = 1, 2, . . . , 429− n (1)

The parameter nwas fixed by cross validation, and the param-
eter R has six possible values, being R = 3 a reasonable
compromise between very restrictive and non-existent filter.

The feature set SR selection is followed by a PLS-based
feature extraction. Following the development presented
in [37], we will consider the problem of modelling the rela-
tionship between two sets of data using PLS. Let X ∈ IRN

and Y ∈ IRM be two multidimensional spaces of variables,
PLS models the relationship between them by score vectors.
After making n observations of each space, PLS decomposes
the matrix X(n× N ) ∈ X of zero-mean variables and matrix
Y(n×M ) ∈ Y of zero-mean variables as follows:

X = TPT + E (2)

Y = UQT
+ F (3)

where X is the training data matrix, Y is a labels matrix,
and T and U are matrices (n × p) formed by the p score
vectors extracted (components, latent vectors). The matrix
P(N × p) and the matrix Q(M × p) correspond to the weight
matrices. Finally, the E(n × N ) and the matrix F(n × M )
are identified as residual values matrices. PLS calculates
the vectors of weights w, c that form the respective weight
matrices mentioned above, as follows:

[Cov(t,u)]2 = [Cov(Xw,Yc)]2 = max
|x|=|s|=1

[Cov(Xr,Ys)]2

(4)
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where Cov(t,u) = ttu/n denotes the covariance sample of
the score vectors t and u.
This last feature extraction step produces a transformed

data matrix Dt . The PLS transformation maximizes the sepa-
ration between classes in the new space, and can also be used
to reduce the feature space dimension by selecting a reduced
number of PLS components.

Apart from this last technique, the use of an autoen-
coder [23] was tested for the same purpose as PLS,
in order to use the data generated at the encoder output as
low-dimensional data input in the classifier. However, its
explanation will not be extended since it is not finally used
in the CAD pipeline due to worse results than PLS for this
dataset.

3) CLASSIFICATION
A simple solution to the multiclass classification problem
is to build binary classifiers and combine them. Classical
aggregation techniques of binary classifiers in multiclass
problems are usually based on the error correcting output
codes (ECOC). Given the multiclass classification problem
on N classes, the simplest example is the one-vs-rest model,
where the output code is generated by N binary classifiers
that exhaust all possible one class versus the N − 1 rest of
the classes classifications. After that, a decoding algorithm
is used to assign a final class to each generated output code.
Considering the output as a length N codeword, the decoding
algorithm can be modelled as a communication problem,
where the class information is being transmitted [13].

We consider here the following optimized approach to the
multiclass classification: a binary classifier is trained on the
Ks = N (N − 1)/2 one-vs-one individual classification tasks
using the transformed data matrix Dt , producing a six-bit
codeword output for each sample. This output is aggregated
to produce a final prediction on the test sample, defined
as a decoding process in ternary ECOC algorithms, taking
values on the four possible classes: HC, MCI, cMCI and
AD. The Hamming decoding [9] is used to map each pos-
sible codeword into a single output class as HD(x, yi) =∑Ks

j=1 1/2(1− sign(x jyji)). The justification of this choice lies
on the fact that the classes are nested. Concretely, the MCI
class is considered as an early stage of AD, although not free
of controversy [11], [31]. In any case, the class cMCI is an
early stage of AD, and thus can be considered as a subclass
of the AD class. For this reason, a ternary ECOC with three
possible symbols allows for reduction of the non-relevant
class influence in the codeword coding and decoding, and
thus managing the possible errors arising from the difference
on binary classification accuracies.

Different classifiers are used to perform the individual
binary tasks: support vector machine (SVM), including the
use of kernel methods [43], nearest neighbours (NN) and
decision trees, using different ensemble techniques: bag-
ging [1], boosting [16] and random forest [2]. Moreover,
deep learning techniques are also used, such as multilayer

perceptron (MLP) and convolution neural network (CNN)
[28], for reference and comparison to other published results
of the challenge [10], [34]. For evaluation purposes and fol-
lowing the results found in [22], an upper bound can be set
on the actual risk based on the re-substitution estimation of
the empirical error |Pact (f (x)) − Pemp(f (x))| ≤ γemp for any
classifier f (x) at a confidence level η given by:

γemp ≤

 1
2l

ln
2
∑Z−1

k=0

(
l − 1
k

)
η


1
2

(5)

III. RESULTS
To estimate the performance of the proposed method,
together with the parameter fitting, two strategies were
employed in this paper. A 10-fold cross validation strategy
and the re-substitution estimation of the actual error on the
training set. Once the parameters were optimized, the test set
was used to estimate the accuracy, recall and F1-score.

Regarding the parameters of (1) and the number of PLS
components, a grid search strategy was employed. Fig. 5
shows the accuracy results on the training set for each pair
(number of PLS components, number of features), where the
number of features is selected by order from the pool of SR,
affected by the value of n. It can be claimed that a wide
range of values around 10 PLS components and 10 selected
features produce competitive classification results, whereas
a choice of PLS components above 3 and below 20 is also a
good compromise independently from the number of features
selected. This can be related to the robustness of the method.

The grid search results indicate that a reduced number
of selected components, around 23, is optimum for classi-
fication results, in combination with a reduced number of
PLS components (around 13). The regions that were selected
are depicted in Fig. 6, excluding the MMSE score and age,
also selected. This optimum set of features was processed as
described in section II-B2, providing the training and test data
for classification.

Table 4 summarizes the classification results on the train-
ing and testing sets for the different classifiers. The results
are also summarized for the test set excluding the dummy
subjects. SVM outperforms every other classifier, and linear
kernel provides slightly better performance than non-linear
kernels. However, even the simplest 1-NN classifier provides
very competitive results if related to the challenge results.
Challenge results are summarized in tables 5 and 6. The
competitive performance of every classifier is a sign of the
preprocessing importance, revealing that the feature selection
and extraction provide a very relevant set of features. Fur-
thermore, the fact that more complex techniques are the ones
with the lowest performance, such as CNN and deep learning
algorithms in general, is consistent. It is mainly due to the use
of such a low number of subjects and features, since these
techniques are especially focused on problems with a large
and high-dimensional dataset.
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FIGURE 5. Accuracy values for each pair number of PLS components, final number of selected features.

TABLE 3. Performance results by class using the selected and extracted
features and the one-vs-one classification scheme with SVM.

TABLE 4. Performance results for selected features using different
classifiers.

Table 3 summarizes the linear SVM classification results
obtained following the proposed aggregation method.
F1-score and recall are also reported during the training
and test phases. The results are detailed for each class: HC,
MCI, cMCI and AD. As expected, AD and cMCI are the
classes with highest recognition values, whereas MCI report
recognition rates slightly over random classification during
training, but improved values on test. Overall, recognition
rates are several percentage points over the challenge winner
approach, outperforming every proposal of the challenge in
the partial ranking (Table 5) and in the final ranking (Table 6).

A study about the control of the family-wise error (FWE)
rate in our CAD system was performed based on the
re-substitution estimation. A dataset of HCs containing
100 samples, 60 from the training set and 40 from the test
set (without dummies), was used. The dataset was randomly
divided into two subsets of 50 subjects each throughout
1000 iterations. Then, the re-substitution estimation was

TABLE 5. Partial results of the challenge by group, using the whole test
set.

evaluated under the null hypothesis that the actual risk was
equal to 0.50 (no group difference in the feature set should
be true), where the number of PLS components (dimen-
sions) was chosen equal to 1. The re-substitution accuracy
obtained was equal to 0.612 with a standard deviation of
0.037. The upper bound associated to this configuration is
equal to 0.136, with a significance level η = 0.05 as shown in
equation 5, thus the actual risk is then at most 0.523± 0.037.
As a conclusion, we cannot reject the null-hypothesis in the
test.

On the other hand, If a 10-fold cross validation strategy
is tested instead of re-substitution, an accuracy of 0.583 ±
0.06 is obtained with 13 PLS components. Although we can
reject the null hypothesis with the current test, it is possible to
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FIGURE 6. Selected regions after one vs. one t-test feature selection.

TABLE 6. Final results of the challenge by group, using the test set
without dummies.

not rejecting the null hypothesis with a confidence interval of
0.10, a value higher than the usual one of 0.05, but interesting
in the neuroimaging field [12].

FIGURE 7. Estimates of actual risk in each one-vs-one classifier for
several dimensions using a sample size of 200 subjects.

The last verification of the significance of the selected
features is assessed using the actual risk [18]. Follow-
ing (5), we calculated the upper bound considering the
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FIGURE 8. Results of the KS test for selected features.

final 13-dimensional dataset in each one-vs-one classifica-
tion. The sample size in each comparison is 200 that is,
by combining both training and test (without dummies) sets,
a total of 200 subjects are considered in a two-class analysis.

With η = 0.05, the upper bound is equal to 0.343. Table 7
shows empirical errors and actual risks of each one-vs-one
comparison according to the upper bound. HCvsMCI and
MCIvscMCI actual risks are above 0.50 at the worst case,
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TABLE 7. Actual risk associated to each one-vs-one classifier using the
selected and extracted features (13) and SVM by resubstitution
(200 samples).

which means that the selected features cannot be accepted
as significant to classify these conditions at the given signif-
icance level. Nevertheless, the difficulty of separating these
conditions is well-known, thus in general terms a high rele-
vance of the selected features is observed.

An additional study was conducted to detect the relation-
ship between the actual error and dimensionality used in each
classifier. Fig.7 shows that the actual risk is never less than
0.50 in the HCvsMCI comparison, whilst in the MCIvscMCI
classification the number of PLS components needed for
achieving that condition is less or equal to 6. Nevertheless,
the use of 6 PLS components would only decrease the overall
accuracy down to 60%.

IV. DISCUSSION
The results presented reveal the importance of feature selec-
tion and extraction in the CAD pipeline of this challenge
problem. Concretely, the default sorting of the 429 cortical
thickness values provided by the organizers of the challenge
seem to contain already important information for classi-
fication. The best results are obtained by removing some
of the original set of default sorted features, by applying
the proposed minimum filter. After the feature selection
by means of the filter in (1), it is relevant to emphasize
that there is not an equilibrium between right and left
hemisphere regions. Specifically, there is a dominance of
left-sided hemisphere regions, which is coherent with recent
findings in CAD diagnosis of AD [29]. If compared with
other competent CAD proposals of the challenge, such as
the winner Dimitriadis-Liparas (DL) proposal [10], there
is a significant overlap with the feature extraction results.
The DL approach also results in a left-hemisphere regions
predominance. Therefore, a successful feature selection and
extraction method is critical for optimal performance.

The use of t-tests as sorting criteria for filtering features
and the upper-bound tests for assessing the feature relevance
are justified on the basis of the Kolmogorov-Smirnov (KS)
and the upper bound tests [18]. Moreover, the KS test quan-
tifies the departure of the empirical distribution function of
the features from a cumulative distribution function of a
particular statistical distribution. In this case, the assumption
underlying a t-test implies that the feature values follow a
normal distribution, which is an acceptable assumption in the
light of the results of the KS test presented in Fig. 8. It is
important to stress that direct comparisons between different
ti values at different tests are never performed, but the values

of ti are used for feature sorting. In addition, we employed a
novel approach [18] for testing relevance in a set of features
based on a data-driven approach (agnostic or free-parameter
model). The latter is based on the re-substitution error esti-
mate and the theoretical upper-bound of the empirical errors
that provide a confidence interval for performing hypothesis
testing.

The present methodology can be applied in other multi-
class classification problems, in which there is a hierarchy
and overlap between classes. Furthermore, the computation
of the final selected algorithm is fast, which is an advantage
over tested deep learning techniques, which require a longer
processing time associated with network training.

Concerning the limitations on the present work, the prepro-
cessing of outliers reveal a high redundancy on the original
data. Therefore, the pre-selection of brain regions for the
challenge, and the extraction of cortical thickness affects the
maximum achievable performance in several ways. Firstly,
the limited number of training samples makes statistical esti-
mations prone to bias, a widely known-problem in medical
imaging [4], [22]. The cross validation technique used in
this work for performance estimations can be considered as
‘‘pessimistic’’ [27], and therefore some mismatches between
training fitting and final test estimations can be expected,
limiting the capabilities of the system for reaching its highest
performance at test level.

Even though the proposed CAD was evaluated using the
test set labels, which were not available during the challenge
competition, the robustness of the method would have led
to the best competition results with just a few submissions.
Table 4 and Fig. 5 illustrate how the method is robust against
small variations on the optimal parameters and classifier
choice, providing with accuracy values over 60% for a wide
range of combinations.

V. CONCLUSION
Using the available data for A Machine learning neuroimag-
ing challenge for automated diagnosis of Mild Cognitive
Impairment, we developed a post-competition method for
multiclass classification. The method is based on a one vs.
one approach for feature selection, PLS feature extraction
and classification. The presented methodology is capable of
identifying the most relevant features for a multiclass classi-
fication by a sorting-and-filtering method, and is evaluated
using different parameters and classifiers. The results are
robust against variations of parameters and classifiers, and
they outperform all the proposals submitted to the challenge
by more than 5 percentage points in accuracy. The method is
also coherent with recent findings in CAD of AD, and can be
applied to other multiclass classification problems.
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